

Should we implant or inject the stem cells ?

Pr Yves-Marie PERS – MD - PhD

Rheumatology Department - INSERM U1183 Montpellier University - France ym-pers@chu-montpellier.fr

UNIVERSITÉ

DE MONTPELLIER

mposium

ticular reatment

Institut national de la santé et de la recherche médicale

Université de Montpellier Faculté **M**ÉDECINE Montpellier-Nîmes

Disclosures

- Funding: Chugai, Amgen, Novartis
- Expert committee: Pfizer, Abbvie, Novartis
- Communications: Medac, BMS, Abbvie

OSTEOARTHRITS a SERIOUS disease? and THIS is why ES YES 168

Bijlsma JWJ et al. Lancet 2011

Introduction

-OA'is COMMON& GROWING

Affects 240 million people worldwide

2X than men

Bijlsma JWJ et al. Lancet 2011

Introduction

HEALTHY

Collagene II

Proteoglycanes

Altered biomechan

Instability
 Damage
 Circadian cloc

ibroblast-like synovio

nfrapatella

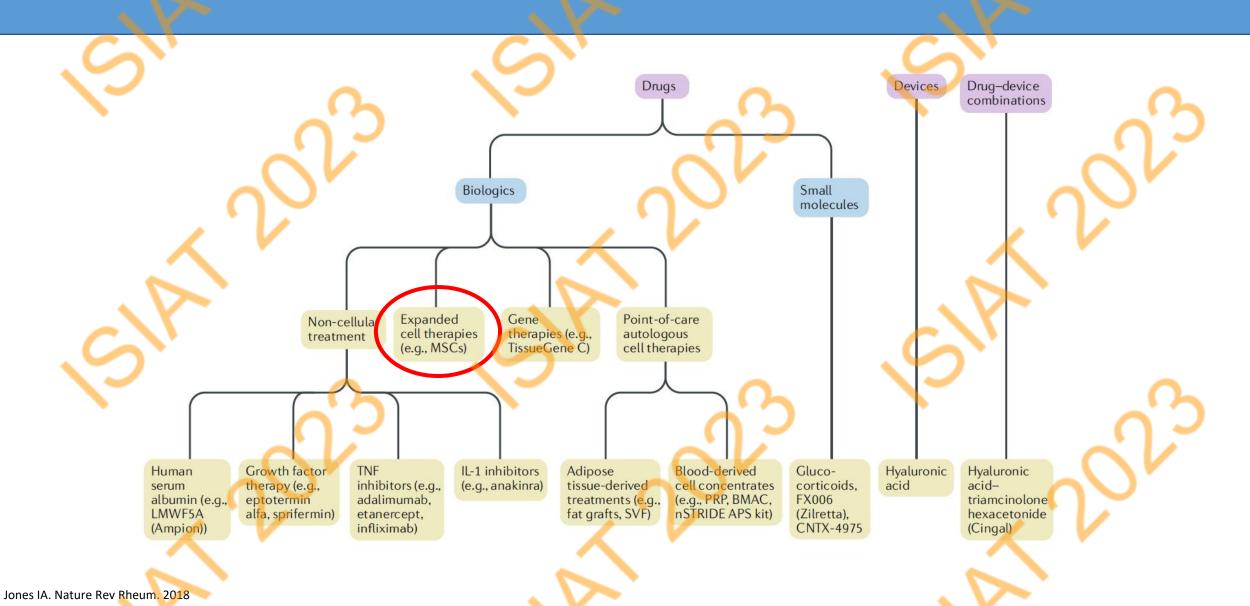
OA

Collagene IX et X

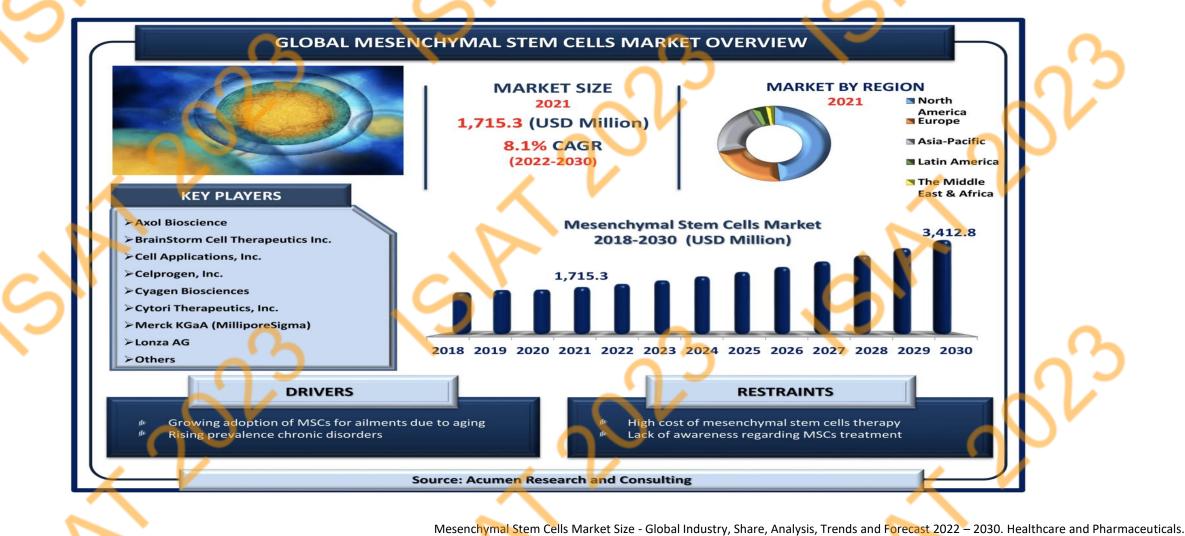
recognition

recepto

Cytokines and chemokines Prostaglandins and leukotrienes Growth factors

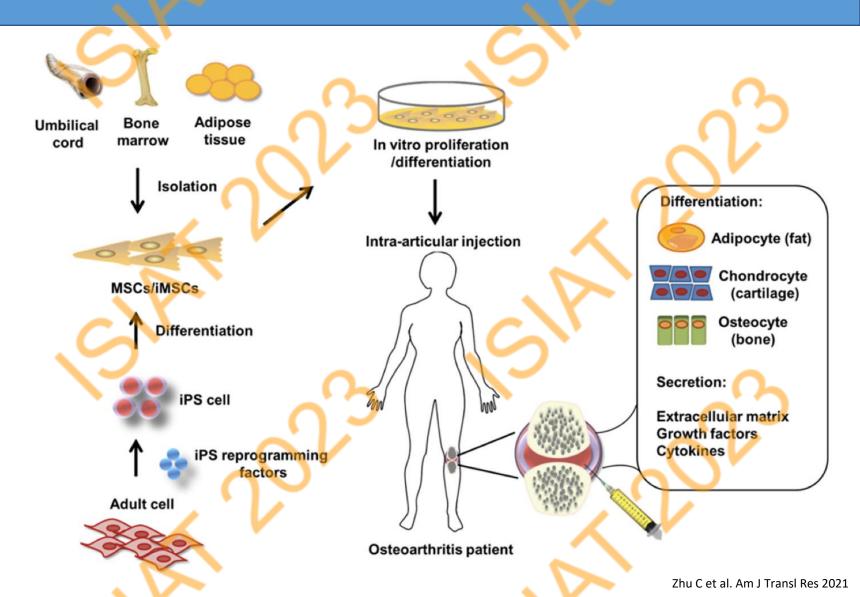

Chondrocyte

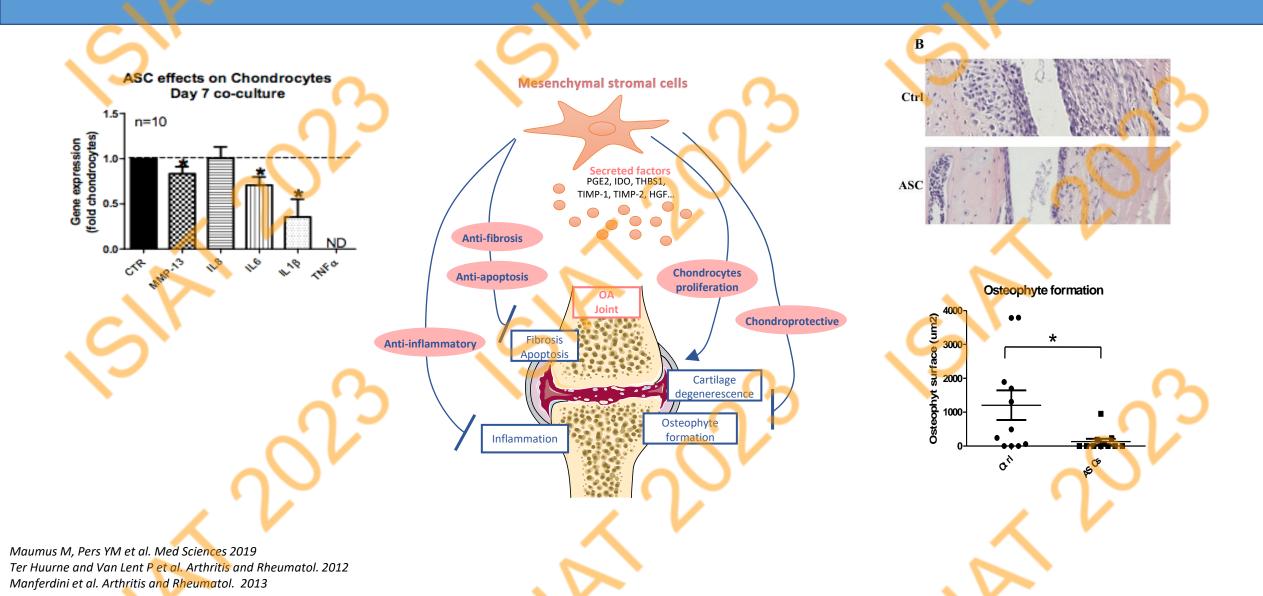
- All the components of the joint are involved in the process
 - ➤ Cartilage ≈ chondrocytes + ECM
 - Subchondral bone ≈ OC/OB
 - \succ Synovial \approx inflammation
 - > Muscles, ligaments
- Therapeutic background
 - No curative or chondro-protective treatment
 - > Moderate pain efficacy:
 - Poor tolerance on high-risk subjects
 - Moderate effectiveness: NSAIDs improve less than 50% of the WOMAC score



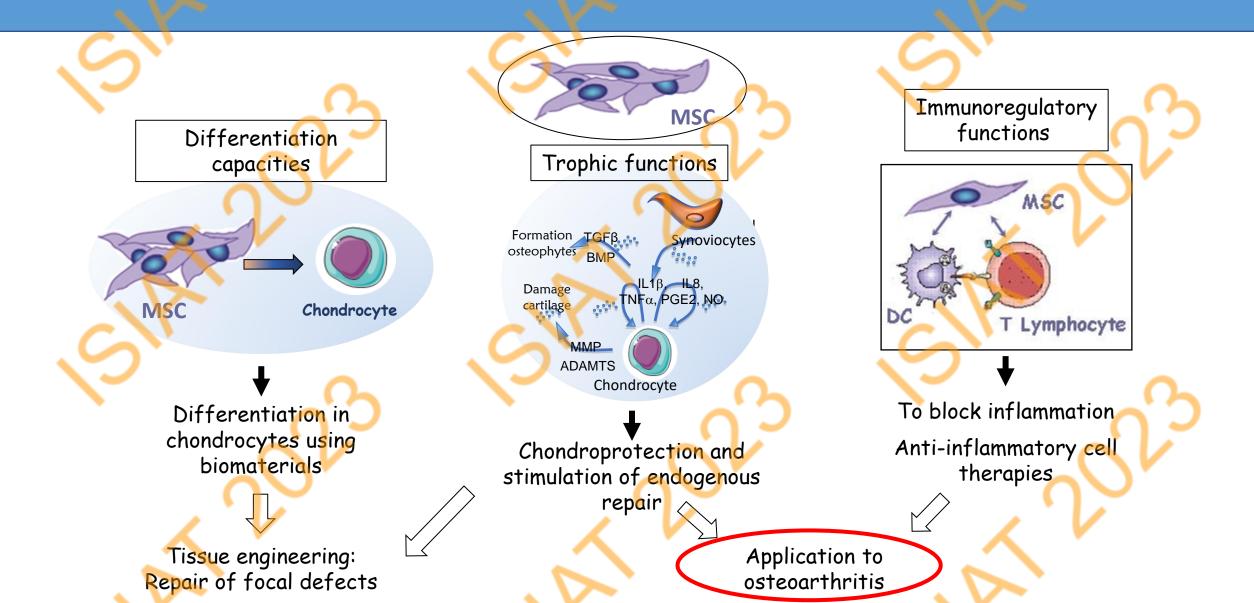
Need to explore new targets and therapies

Intra-articular treatment in OA

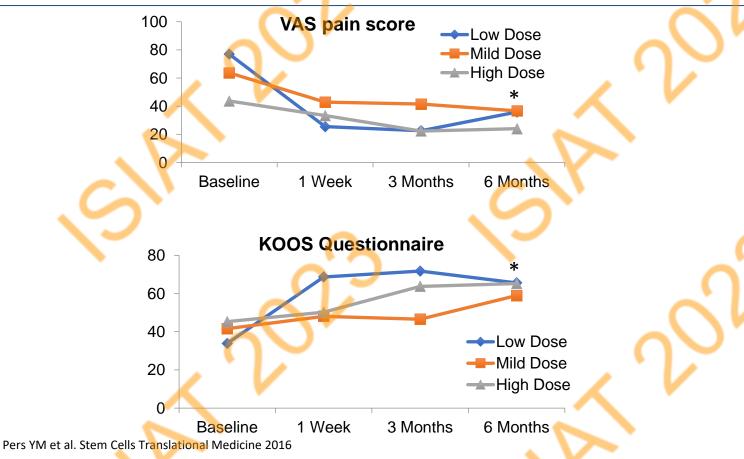


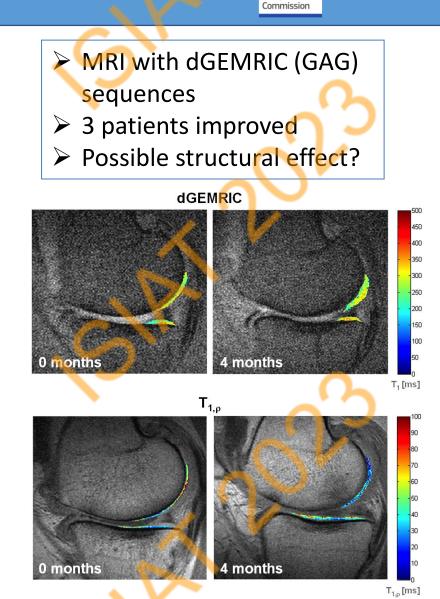

https://www.acumenresearchandconsulting.com/mesenchymal-stem-cells-market. Published 2022

Why stem cell therapy makes sense in OA?


- MSC > Chondrocytes
- Sources available
- Cell differentiation
- Allo > autologous

Why stem cell therapy makes sense in OA?


When MSC may be useful for cartilage damage ?

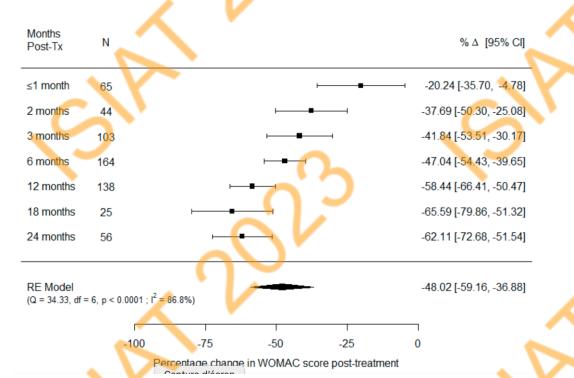


ADIPOA1 clinical study

Excellent safety: 4 local joint effusion during the first month
 Histological analysis at 3 months: no cell or ectopic proliferation
 TKR occurs for 18% of patients at 1 year and 55% at 4 years

European

MSC clinical results in OA


MDPI

Systematic Review

cells

Meta-Analysis of Adipose Tissue Derived Cell-Based Therapy for the Treatment of Knee Osteoarthritis

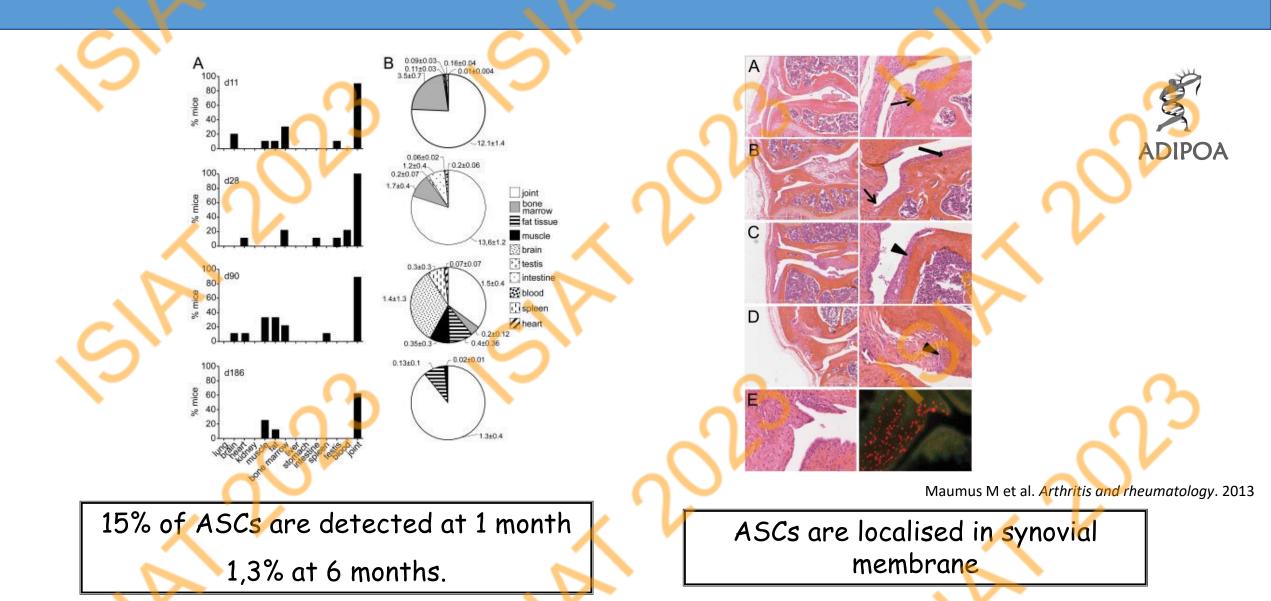
Nikhil Agarwal ¹, Christopher Mak ², Christine Bojanic ², Kendrick To ² and Wasim Khan ^{2,*}

Joint Bone Spine 89 (2022) 105404 Contents lists available at ScienceDirect Joint Bone Spine journal homepage: www.elsevier.com Recommendations and metaanalyses Safety and efficacy of adipose-derived mesenchymal stem cells for knee osteoarthritis: A systematic review and m-analysis

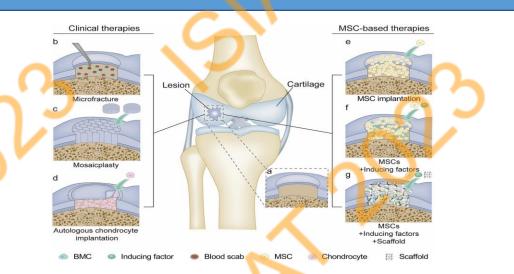
Mohamed Gadelkarim^{a,b,1,*}, Aya Abd Elmegeed^{c,1}, Ahmed Hafez Allam^{d,1}, Ahmed K. Awad^e, Mostafa Ahmed Shehata^{b, f}, Asmaa AbouEl-Enein^g, Mohamed Eid Alsadek^h, Mohammad Abo Deebⁱ, Ahmed M. Afifi

JUIIL DUIR SPILE 09 (2022) 103404

suppl. Information


Conclusion: In the present single-arm meta-analysis, ADMSCs were associated with significant reduction in pain and improvement in QOL and knee functions in patients with knee OA. However, double arm analyses did not confirm these positive findings, which may be returned to the small sample size of included patients. Therefore, to introduce ADMSCs into clinical practice and establish guidelines for their use, more randomized controlled clinical trials with large sample sizes and long-term follow-ups are needed.

Heterogeneity in the current literature Risk of bias not negligible


Agarwal et al. Cells 2021 Gadelkarim et al. JBS 2022

ASC distribution after IA injection -> reduced lifespan

MSC based therapies for cartilage repair

- Several advantages
 - produce various ECM for the recovery of cartilage functions
 - release cytokines, growth factors, and chemokines to drive endogenous MSCs
 - combination of MSCs with the engineered scaffold
- Large cartilage lesions: surgery and tissue engineering

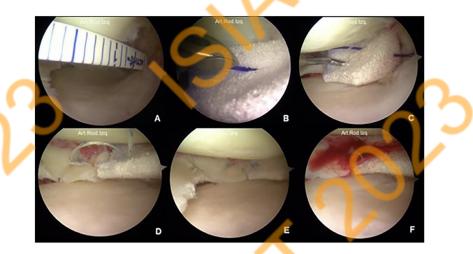


Figure 3. Surgical technique of medial meniscus substitution in the posterior horn with polyurethane implant enriched with MSCs. (A) Defect size is estimation with a flexible ruler. (B, C) Once the implant is trimmed in

MSC implant > chondrocyte implant ?

BM-MSCs efficacy compared to autologous chondrocyte implantation ?

MSCs are as efficient as chondrocytes for cartilage repair (n=36)
➢ Improvement of patient QoL and activities in sports
➢ Hyalin cartilage formation (1 year)
➢ Less graft hypertrophy

MSCs can be used as an alternative to chondrocytes for cartilage repair

- reduced costs, better rate of cartilage cell proliferation
- only one surgery
- minimize morbidity at the donor site

Col II

Coll

(A)

Col X

Large experience of MSC implants in OA

Mesenchymal Stem Cell Implantation in Knee Osteoarthritis

Midterm Outcomes and Survival Analysis in 467 Patients

Yong Sang Kim,* MD, Dong Suk Suh,* MD, Dae Hyun Tak,* MD, Pill Ku Chung,* MD, and Yong Gon Koh,*[†] MD

Investigation performed at Yonsei Sarang Hospital, Seoul, Republic of Korea

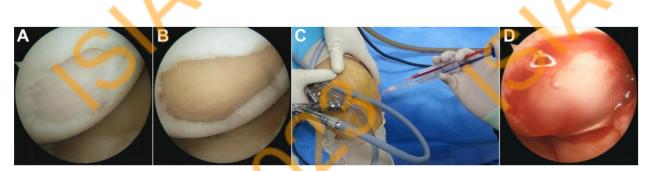


Figure 1. Arthroscopic implantation of mesenchymal stem cells loaded in fibrin glue. (A) An articular cartilage lesion in the medial femoral condyle was noticed. (B) An accurate debridement of all unstable and damaged cartilage in the lesion was performed. (C)

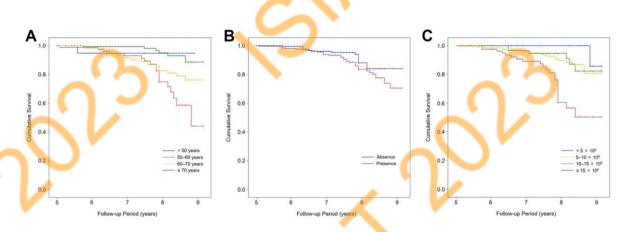


Figure 3. Kaplan-Meier survival curves. Survival rate of groups divided according to (A) age, (B) presence of bipolar kissing lesion, and (C) number of mesenchymal stem cells.

TABLE Z

Comparison of Preoperative and Postoperative Clinical and Radiological Outcomes^a Postoperative 1 y 3у 5 yPreoperative 9 y $67.2 \pm 9.9^{b,c}$ $66.1 \pm 9.7^{b,c,d}$ $62.8 \pm 8.5^{b,c,d,e}$ IKDC score 39.2 ± 7.2 66.6 ± 9.6^{b} $3.2\pm0.9^{b,c,d,e}$ Tegner score 2.3 ± 1.0 3.4 ± 0.9^{b} $3.5 \pm 0.9^{b,c}$ $3.4 \pm 0.9^{c,d}$ KL grade $159(32.9)^{b,c,d}$ $164(34.0)^{b,c}$ Grade 1 189 (39.1) 184(38.1)173(35.8)293 $(60.7)^{b,c,d}$ $305 (63.1)^{b}$ Grade 2 294 (60.9) 299 (61.9) 310 (64.2) $26(5.4)^{b,c,d,e}$ Grade 3 $12(2.5)^{b,c,d}$ $2(0,4)^{b,c,d}$ $5(1.0)^{b,c,d,e}$ Grade 4

Kim et al. The Orthopaedic Journal of Sports Medicine 2020

Limited evidence of MSC implants in OA

Knee Surgery, Sports Traumatology, Arthroscopy https://doi.org/10.1007/s00167-023-07575-w

KNEE

Mesenchymal stem cell implantation provides short-term clinical improvement and satisfactory cartilage restoration in patients with knee osteoarthritis but the evidence is limited: a systematic review performed by the early-osteoarthritis group of ESSKA-European knee associates section

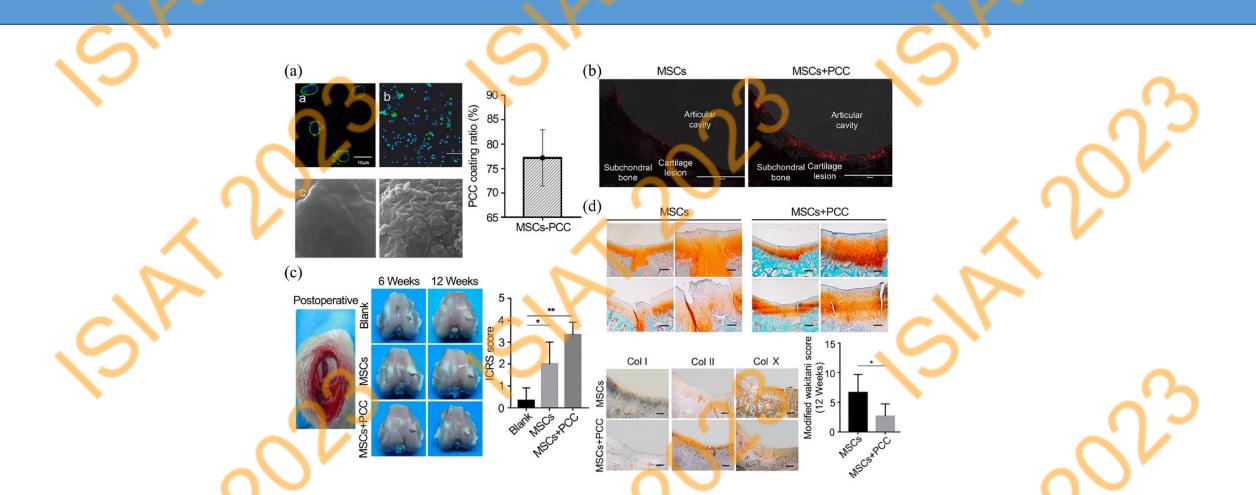
Hamid Rahmatullah Bin Abd Razak¹ · Katia Corona² · Trifon Totlis^{3,4} · Li Yi Tammy Chan⁵ · Jose Filipe Salreta⁶ · Obeida Sleiman⁷ · Michele Vasso⁸ · Mike H. Baums⁷

Received: 2 February 2023 / Accepted: 5 September 2023

91


Check for updates	

Study	LoE	Country	Study design	QoE score/total
Kim et al. Am J Sports Med [18]	3	South Korea	RE	MINORS 17/24
Kim et al. Osteoarthritis Cartilage [15]	2	South Korea	PRO	MINORS 13/16
Park YB et al. Stem Cells Transl Med [25]	2	South Korea	PRO	MINORS 12/16
Kim et al. Knee Surg Sports Traumatol Arthrosc [16]	1	South Korea	RCT	MJS 5/8
Kim et al. Orthop J Sports Med [19]	4	South Korea	RE	MINORS 14/16
Song et al. Regen Ther [29]	4	South Korea	RE	MINORS 12/16
Song et al. World J Stem Cells [30]	4	South Korea	RE	MINORS 12/16
Kim et al. Orthop J Sports Med [20]	4	South Korea	RE	MINORS 14/16
Yang et al. Knee Surg Sports Traumatol Arthrosc [36]	3	South Korea	RE	MINORS 20/24


MINORS methodological index for non-randomised studies, MJS modified jadad scale, PRO prospective cohort study, RCT randomized control trial, RE retrospective cohort study

Abstract

Purpose Implantation of mesenchymal stem cells (MSCs) is a potential cell-based modality for cartilage repair. Currently, its clinical use largely surrounds focal cartilage defect repair and intra-articular injections in knee osteoarthritis. The MSCs' implantation efficacy as a treatment option for osteoarthritis remains contentious. This systematic review aims to evaluate studies that focused on MSCs implantation in patients with knee OA to provide a summary of this treatment option outcomes. Methods A systematic search was performed in PubMed (Medline), Scopus, Cinahl, and the Cochrane Library, Original studies investigating outcomes of MSCs implantations in patients with knee OA were included. Data on clinical outcomes using subjective scores, radiological outcomes, and second-look arthroscopy gradings were extracted. **Results** Nine studies were included in this review. In all included studies, clinical outcome scores revealed significantly improved functionality and better postoperative pain scores at 2-3 years follow-up. Improved cartilage volume and quality at the lesion site was observed in five studies that included a postoperative magnetic resonance imaging assessment and studies that performed second-look arthroscopy. No major complications or tumorigenesis occurred. Outcomes were consistent in both single MSCs implantation and concurrent HTO with MSCs implantation in cases with excessive varus deformity. **Conclusion** According to the available literature, MSCs implantation in patients with mild to moderate knee osteoarthritis is safe and provides short-term clinical improvement and satisfactory cartilage restoration, either as a standalone procedure or combined with HTO in cases with axial deformity. However, the evidence is limited due to the high heterogeneity among studies and the insufficient number of studies including a control group and mid-term outcomes. Level of evidence IV.

Implant MSC with scaffold > implant MSC ?

> Pericellular Col I coating (PCC) for BM-MSCs enhance the quality of cartilage regeneration

Xia H et al .Stem Cell Res Ther 2018

Choose the appropriate scaffold

- Biodegradable
- Biocompatible
- Support chondrogenesis and osteochondral tissue

Physical loading

• Mechanical properties

Space for tissue regeneration

- Porous structure (nutrients vs adhesion)
- Low immunogenicity
- Antimicrobial activity

Choose the appropriate scaffold

NATURAL polymer

TABLE 1 | Characteristics of the outlined natural polymers for CTE

Biomaterials	Characteristics	Advantages
Chitosan	Originating from chitin; Linear natural carbohydrate biopolymer; Free amine groups in its backbone chain; Slower degradation rate	Biodegradabilit Non-antigenicit Adsorption cap Antimicrobial a Promoting cho
Collagen	Important part of natural cartilage organic materials; One of the most abundant proteins in humans and a major component of extracellular matrix	Biocompatibility Low immunoge Biodegradabilit Promoting choo Facilitation of c remodeling; Easy processin
Silk	Extracted from Bombyx mori cocoon; A biocompatible material found as the core of a structural protein fiber;	Excellent mech Biocompatibility Controlled bioc Lower infection Easy processin
Alginate	Produced from the cell wall of brown algae; Polysaccharide with negative charge; A cell-friendly gelation	Low immunoge Biocompatibility High abundanc Low prices; Regulation of th chemokines; Good chondrog
Hyaluronic acid	A disaccharide unit; Abundant in the human body, present in the ECM of the skin, cartilage, and lenses	Biocompatibility High hydrophili Nontoxicity; Elasticity;

Advantages	Disadvantages
Biodegradability; Biocompatibility; Non-antigenicity; Adsorption capabilities; Antimicrobial activity; Promoting chondrogenesis	Low solubility; Low mechanical strength
Biocompatibility; Low immunogenicity; Biodegradability; Promoting chondrogenesis; Facilitation of cell ingrowth and remodeling; Easy processing	Low solubility; Low mechanical strength; Rapid biodegradation rate
Excellent mechanical properties; Biocompatibility Controlled biodegradability; Lower infection risk; Easy processing;	Delayed hypersensitivity; Initiator of immune reactions;
Low immunogenicity; Biocompatibility; High abundance resources; Low prices; Regulation of the inflammatory chemokines; Good chondrogenic potential	Low biodegradability; Poor adhesion
Biocompatibility; High hydrophiliaity; Nontoxicity; Elasticity;	Low mechanical properties; Rapid enzymatic degradation

References

Keller et al. (2017), Giuliani (2019), Sultankulov et al. (2019

Lee et al. (2001), Kuroda et al (2007), Turk et al. (2018), Li L. et al. (2019), Margues et al.

Zhang et al. (2010), Wang et a (2011), Ma et al. (2018), Bharadwaz and Javasuriya

Cho et al. (2009), Arlov et al. (2014), Park and Lee (2014), Filardo et al. (2018), Li L. et al.

Collins and Birkinshaw (2013) Gupta et al. (2019), Li L. et al. (2019), Zheng et al. (2019)

- Positive: biocompatibility, biodegradability, favour cell interactions, cell adhesion
- Negative: mechanical properties, shape difficulty

SYNTHETIC polymer

TABLE 2 | Characteristics of the outlined synthetic polymers for CTE

Biomaterials	Symbol	Characteristics	Advantages	Disadvantages	References
Poly(glycolic acid)	PGA	Linear, crystalline hydrophobic polyester; Semicrystalline polymer; Insoluble in most organic solvents	Biocompatibility; Availability; Easy processing; Composited with other biomaterials	Release of acidic degradation products; Poor cell adhesion; Fast biodegradability; Low mechanical properties	Klein et al. (2005), Zwingmann et al. (2007), Nakao et al. (2017), Birru et al. (2018)
Poly(lactic acid)	PLA	Polyesterification reaction production of lactic acid; Lower crystallinity and hydrophilicity than PGA; Four different forms	Biocompatibility, controllable biodegradability; Low toxicity and viscosity; Favorable mechanical properties; Thermostability; Thermoplasticity	Poor cell adhesion	Li et al. (2006), Zwingmann et al. (2007), Lopes et al. (2012), Revati et al. (2017), Smieszek et al. (2019), Szyszka et al. (2019), Marycz et al. (2020)
Poly(ethylene glycol)	PEG	An amphiphilic polymer that cannot be recognized by the immune system	Biocompatibility; Biodegradability; Non-immunogenic; Promoting chondrogenesis; Great flexibility; Low polydispersity	Poor cell adhesion	Karim et al. (2016), Ding and Li (2017), Cheng et al. (2018), Cheng H. et al. (2019), Li et al. (2018), Wang et al. (2019)
Poly-E-caprolactone	PCL	Semi-crystalline; A synthetic polyester polymer	Biocompatibility; Biodegradability; Elasticity; Excellent mechanical properties; Thermoplastic	Poor hydrophilicity; Poor cell adhesion	Ousema et al. (2012), Sousa et al. (2014), Theodoridis et al. (2019), Venkatesan et al. (2020)

Positive: low degradation, extended lifespan, better mechanical features, easily design shape
 Negative: acid degradation, weaker cell interactions, risk of local pH increase, cell adhesion

Repair of focal defects with MSC+scaffold: Animals models

MDPI

International Journal of Molecular Sciences

Review

Bone Marrow-Derived Mesenchymal Stem Cell Implants for the Treatment of Focal Chondral Defects of the Knee in Animal Models: A Systematic Review and Meta-Analysis

Ernest Lee ^{1,†}, Ilias Ektor Epanomeritakis ^{2,†}, Victor Lu ³ and Wasim Khan ^{4,*}

Study	MRAW	95%-CI	Weight
Vakitani et al., 1994 - BMSCs	1.20	[0.94; 1.46]	8.2%
Katayama et al., 2004 - CDMP1 transfected BMSCs	1.00	[0.82; 1.18]	8.8%
Katayama et al., 2004 – GFP transfected BMSCs	1.00	[0.82; 1.18]	8.8%
Kayakabe et al., 2006 - Gel with MSCs	1.30	[0.32; 2.28]	3.0%
Kayakabe et al., 2006 - Gel with MSCs and FGF-2	1.00	[0.65; 1.35]	7.4%
an et al., Sep 2006 - PLGA-GCH scaffold + MSCs	0.30	[0.24; 0.36]	9.4%
an et al., Sep 2006 – PLGA scaffold + MSCs	0.70	[0.64; 0.76]	9.4%
an et al., Jun 2006 – PLGA–GCH scaffold + MSCs	0.30	[0.28; 0.32]	9.5%
an et al., Jun 2006 – PLGA scaffold + MSCs	0.60	[0.54; 0.66]	9.4%
an et al., 2007 – Undifferentiated MSC + scaffold	0.20	[0.14; 0.26]	9.4%
an et al., 2007 – Pre-differentiated MSC + scaffold	0.30	[0.24; 0.36]	9.4%
.i et al., 2010 – BMSCs —	0.24	[-0.13; 0.61]	7.2%
Random effects model	0.63	[0.39; 0.87]	100.0%
Prediction interval		[-0.16; 1.42]	

Figure 2. Forest plot on the mean histological integration score after receiving BMSC implant therapy, where 0/2 points = both edges integrated, 1/2 = one edge integrated, and 2/2 = no integration. (Abbreviations: BMSC, bone marrow-derived mesenchymal stem cell; CDMP1, cartilage-derived morphogenetic protein 1; GFP, green fluorescent protein; FGF-2, fibroblast growth factor-2; PLGA, poly-(lactic-co-glycolic acid); GCH, gelatin/chondroitin/hyaluronate; CI, Confidence Intervals) [22,24–28,30].

- High-quality integration was achieved
- Subgroup analysis showed better integration outcomes for studies using PLGA
- Limits:
 - Cell source
 - Implant composition
 - MSC characteristics

Repair of focal defects with MSC+scaffold: Humans

Technique	n; Sex; Age (years) (mean ± SD)	Follow-up period (months)	Finding	Ref.	
3M-MSC in type I collagen gel	1; M (31)	12	Hyaline-like cartilage	[49]	
BM-M <mark>SC</mark> within type I collagen gel on a collagen scaffold seeded on PLA scaffold	3; 2 M, 1F (32–45)	18	Coverage of chondral defect	[73]	
BMDC suspended in collagen or seeded on HA scaffold	48; 27 M, 21F (28±9)	24–35	Coverage of chondral defect and hypertrophic cartilage	[57]	
BMD <mark>C</mark> seeded on HA scaffold supplemented with platelet- rich fibrin	20; 12 M, 8F (28 ± 9)	29±4	Proteoglycan and type II collagen	[58]	
BMDC seeded on HA scaffold supplemented with platelet- rich fibrin	81; 47 M, 34F (30±8)	59 ± 26	Hyaline-like cartilage	[74]	
BM-MSC within platelet-rich fi- brin glue	5; 4 M, 1F (25)	12	Coverage of chondral defect	[75]	
BM-MSC covered by periosteum	72; 38 M, 34F (44±11)	24	Aggrecan and type II collagen	[76]	
BMDC with batroxobin covered by type I/III collagen matrix	15; 10 M, 5F (48)	24–38	Coverage of chondral defect	[77]	
BM-MSC seeded on type I collagen scaffold supplemented with fibrin glue	2; 2 M (24–25)	30–31	Partial coverage of chondral defect	[78]	
Peripheral blood-derived MSC with HA	5; 1 M, 4F (39±11)	10–26 Partial coverage of chondral defect		[79]	
BMDC within fibrin glue and coverage with collagen and collagen membrane	1; M; 37 yrs	24	Partial coverage of chondral defect	[80]	
BMDC in fibrin glue and coverage with a PGA + HA membrane	9; 5 M, 4F (48 ± 9)	20–24	Hyaline-like cartilage	[81]	
BMDC in collagen/platelet paste or seeded on HA or seeded on HA scaffold supplemented with platelet gel	49; 27 M, 22F (28±9)	48	Coverage of chondral defect in 45%	[59]	
Perip <mark>heral blood-derived MSC and HA</mark>	49; 17 M, 32F (37 ± 7)	24	Partial coverage of chondral defect	[18]	

- Heterogeneous integration
- Few studies available

Repair of focal defects with MSC+scaffold: Humans

- CARTISTEM (Medipost)
- Retrospective study
- Large lesion (> 4 cm²)
- Located in medial femoral condyle
- Excluded other compartment lesions
- hUC-MSC + HA (+/- meniscectomy)
- 85 patients
 - Significant improvement in all PRO scores
 - MRI follow-up show repaired cartilage hypertrophy without correlation with PRO

Clinical and Magnetic Resonance Imaging Outcomes After Human Cord Blood–Derived Mesenchymal Stem Cell Implantation for Chondral Defects of the Knee

Jun-Seob Song,* MD, Ki-Taek Hong,* MD, Na-Min Kim,* MD, Byung-Hun Hwangbo,[†] MD, Bong-Seok Yang,[‡] MD, Brian N. Victoroff,[§] MD, and Nam-Hong Choi,^{†||} MD *Investigation performed at Nowon Eulji Medical Center, Seoul, Republic of Korea*

Song et al. The Orthopaedic Journal of Sports Medicine 2023

Conclusions: no definitive answer !!!

🖲 We know 📈

- Positive pre-clinical data
- Numerous published phase I/II
- Excellent tolerance
- Cost issues
- Risk of bias
- Standardisation of cell manufacturing

- We don't know... • Tissue repair ?
 - Dose ? Frequency of delivery ?
 - Type of scaffolds? 3D printing
 - The targeted population ?
 - A potency test ? Priming cells ?

ADIPOA-2

Phase II/III studies ?

Limitation = cell integration / indications

